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Abstract

This report proposes an early fusion method to integrate
point cloud and camera views at point granularity for 3D
object detection in autonomous vehicle scenarios. There
exists work [1, 4] considers point cloud from 2D perspec-
tive, builds feature connection between the frontal view or
bird-eye view (BEV) of point cloud and the camera im-
ages. However, these methods can’t been extended to lever-
age the new techniques like 3D sparse convolution [2] and
set abstraction[6]. Meanwhile, there is a surge of work
[11, 8, 3] which relies only on point cloud and achieves
impressive performance beyond previous work. It motivates
me to find a better way to fuse the two modalities. Instead
of frontal view or BEV, I think that multi-modality fusion
should be applied to each point of the point cloud, which
best suits for further manipulation of 3D sparse convolu-
tion and set abstraction. In this report, I design two fusion
methods for 3D sparse convolution and set abstraction re-
spectively. Experiment shows my methods can improve the
performance of PV-RCNN[7], which was originally a pure
point cloud solution, by a considerable margin.

1. Introduction
3D object detection is a crucial perception module for

robotics and autonomous vehicles. Autonomous systems
generally gather information of the environment by cam-
eras, radar or lidar sensors, etc. The task aims to solve the
position and geometry metrics such as width, height and
orientation of the 3D objects like pedestrians, traffic lights,
vehicles etc.

In addition to images, 3D detection can leverage point
cloud detected by radar/lidar, which injects more environ-
mental inputs at the cost of increased complexity in fea-
ture extraction. To handle point cloud, VoxelNet [13] pro-
poses to divide a point cloud into equally spaced 3D voxels,
then summarizes features of points within the same voxel as
the feature representation of that specific voxel cell. Voxel
grid is a very sparse 3D data structure, of which convolu-

tion can be conducted by submanifold sparse convolution
network [2]. By 3D convolution, a point cloud can be en-
coded to bird eye view (BEV) feature-map on which 2D
detectors are applied to generate 3D bounding boxes. Con-
volution involved methods are generally computation ex-
pensive, alternative is point based method. PointNet++[6]
proposes set abstraction (SA) operation, which samples a
set of points by farthest point sampling (FPS). For each
sampled point, PointNet++ groups features of its neigh-
bouring points within a proper region to form order invari-
ant point representation. By stacking several SA opera-
tions and adjustable regions, PointNet++ builds a percep-
tion stack which can extract multi-scale feature from point
cloud. Voxelization, 3D sparse convolution and set abstrac-
tion are now the basic building blocks of 3D object detec-
tion pipeline based on point cloud.

Since point cloud providing accurate metrics and robust
to light conditions, most work focus on pure point cloud
approaches, the effectiveness of which is supported by win-
ners of the 3D object detection challenges held by Waymo
and Motional. On the leadboards, PV-RCNN[7] and Cen-
terPoint [12] are both pure point based methods without
image. However, the success of pure point methods does
not imply that image inputs are useless. Intuitively, differ-
ent objects generally have different colors, thus color aware
feature may positively contribute to the object detection.
Specific to autonomous vehicle scenario, with images cap-
tured by cameras from different viewports, we can construct
the 3D environment to some degree by geometry methods.
Thus images actually preserve abundant environmental in-
formation. Inspired by this, I propose to explore effective
ways to fuse point cloud and image features for 3D detec-
tion of autonomous vehicle scenario.

The challenge is how to bridge point cloud and image. If
we want to keep the advantages of point based method, fea-
tures from the two modalities must be aligned at point level.
A straightforward method is to calibrate the cameras with
respect to the point cloud generator. Then we can build the
correspondence between 3D points (x, y, z) and image coor-
dinates (u,v) by camera projection. With image coordinate
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(u,v), we can retrieve image color and image feature map.
My fusion method is highly depend on this 3D-2D corre-
spondence. In section 4.1, I illustrate my multi-modality
fusion method for 3D sparse convolution operation. In sec-
tion 4.2, I illustrate my multi-modality fusion method for
set abstraction operation.

To the best of my knowledge, no previous work tried
to fuse point cloud and camera views at the granularity of
point. The positive impact on performance of PV-RCNN
[7] demonstrates the effectiveness of my proposed method.

2. Related Work

Methods based on point cloud and images. MV3D[1]
takes the bird’s eye view and front view of LIDAR point
cloud as well as an image as input. It first generates 3D ob-
ject proposals from bird’s eye view map and project them
to three views. A deep fusion network is used to com-
bine region-wise features obtained via ROI pooling for each
view. The fused features are used to jointly predict ob-
ject class and do oriented 3D box regression. ContFuse[4]
has two streams, namely the camera image stream and the
BEV LIDAR stream. It propose a Continuous fusion lay-
ers to fuse the image features onto the BEV feature maps.
These methods are generally efficient for accurate 3D pro-
posal generation but the receptive fields are constraint by
the kernel size of 2D/3D convolutions.

Methods based on pure point cloud. PointRCNN [8]
generates 3D proposals directly from the whole point clouds
instead of 2D images for 3D detection with point clouds
only. The following work STD[10] proposes the sparse to
dense strategy for better proposal refinement. VoteNet[13]
proposes the hough voting strategy for better object fea-
ture grouping. These point based methods are mostly based
on the PointNet[5] series, especially the set abstraction
operation[6], which enables flexible fields for point cloud
feature learning.

3. Problem Statement

I am experimenting my method with Waymo Open
Dataset, which has 4 kinds of objects: vehicle, pedestrian,
traffic sign and cyclist. For each object, the annotation in-
cludes its width, length, height and yaw angle. The task is to
predict these geometry metrics by the given 3D point cloud
and visual inputs. Specific to 3D detection/tracking tasks,
Waymo Open Dataset provides 1000 video segments each
containing roughly 200 frames, which is further divided into
768/232 train/validation splits. For each frame, the dataset
provides the raw range data and images acquired by lidar
and 5 cameras respectively. The 5 cameras are placed on
the front left, front right, side left, side right and rear of the
vehicle, each camera is calibrated to the reference system of
the 3D points.

3.1. Data Preprocessing

I use the PV-RCNN[7] implementation in OpenPCDet
as the baseline. PV-RCNN has its own data preprocessing
which preserves 3D data of each frame and the processed
data takes roughly 1TB disk space. Since I want to lever-
age 2D information, I have to preserve the 5 images and the
2D correspondence of the 3D point cloud, the data volume
is 10 times to the PV-RCNN case for each frame. Thus I
have to sample the video segment at an interval of 5 frames.
I modify the data preprocessing of PV-RCNN to serve my
purpose. My final dataset is 1.7TB, I have developed a Py-
torch dataset module to read in both 3D cloud and visual
inputs.

3.2. Evaluation

3D object detection task uses average precision (AP) and
mean average precision (mAP) as the evaluation metrics.
Intersection of union (IoU) between a bounding box predic-
tion and the ground truth is used to conduct ture/false posi-
tive judgement, by which we can compute precision and re-
call. There are 4 classes in Waymo Open Dataset: car, traf-
fic sign cyclist and pedestrian. For each class, we generate
its precision-recall curve and compute its average precision
(AP) according to Eq.(1).

AP =

∫ 1

0

p(r)dr (1)

Then the mAP is computed by Eq.(2).

mAP =
APcar +APcyclist +APpedestrian +APsign

4
(2)

4. Technical Approach
The toolkit of Waymo Open Dataset has a module to

project arbitrary 3D points into 2D image, taking noising
effects such as distortion and vehicle velocity into consider-
ation. However, the toolkit supporting Tensorflow only and
involving C++ implementation, I can’t make it compatible
to Pytorch in such a short time. Fortunately, the toolkit pro-
duces the 2D correspondences in at most two camera views
for each 3D point accompany with the cloud generation. Al-
though I can’t project any 3D point to camera views, I do
can access visual information via the given 3D-2D corre-
spondence at the very beginning of the pipeline. Actually,
this limits my method on early fusion because the 3D-2D
correspondence will be lost in further manipulation. I plan
to maintain 3D-2D correspondence to enable fusion in in-
termediate process in future work, however, at this report, I
stick to early fusion to validate the effectiveness of my idea.

Figure 1 illustrates the pipeline of PV-RCNN [7]. The
upper part is 3D sparse convolution[2], which considers the
point cloud as an integrated structure to extract multi-scale
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Figure 1. 3D detection pipeline of PV-RCNN

volumetric feature, like that 2D convolution dose to image.
The lower part is set abstraction [6], which focus on the
local structure of point cloud. PV-RCNN has an interaction
between 3D convolution and set abstraction, which groups
point representation in the 3D scaled convolutional features.
Since my method is early fusion, I won’t touch architecture
of PV-RCNN deeply but focus on feature extraction stage.
In section 3.1, I explain my method to inject RGB color in
3D sparse convolution. In section 3.2, I explain my method
to inject visual information in set abstraction.
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Figure 2. Injecting color in 3D sparse convolution

4.1. Visual Aware Point Cloud in 3D Sparse Convo-
lution Stage

After voxelization, point cloud becomes a 3D grid. Each
cell has a feature vector obtained by aggregating features of
points locating in that cell in some way. Like 2D convo-
lution, 3D convolution has a kernel applied to each cell to
aggregate local information and stepped in a specific stride
similar as 2D convolution.

My early fusion method doesn’t modify 3D convolu-
tion components but modify the representation of point
in point cloud to build visual aware cloud as input of

3D convolution. Specifically, as illustrated in Figure 2, a
3D point p = (x, y, z) has a feature vector of 5 entries:
(x, y, z, intensity, elongation). Remember that Waymo
toolkit provides 2D coordinates of p in at most 2 camera
views V 1

p , V
2
p , by which I can retrieve the colors of the 3D

point. Formally, I define the RGB feature cp as below:

ti =

{
V i
p (p), p is visible in V i

p ;

[0, 0, 0], Otherwise;
, i ∈ {1, 2} (3)

cp = t1 + t2 (4)

Eq.(4) uses addition to avoid the impact of the image order,
which is inspired by PointNet [5].

The color augmented feature fp is obtained by simply
appending cp to the raw point feature, that is:

fp = (x, y, z, intensity, elongation, ∗cp) (5)

The 3D point cloud with the color augmented feature is then
handed over to 3D convolution operation.

4.2. Visual Aware Point Cloud in Set Abstraction

Unlike 3D convolution, in which the point cloud is con-
sidered as a whole, set abstraction firstly samples a small
seed set of points via FPS (furthest point sampling) as the
representation of the point cloud, then gathers points in
neighbor region of different size around each seed point
to build multi-scale feature. Intuitively, the first sampling
stage will drop many points which incurs spacial informa-
tion loss. I want to complement the information more from
visual side. Thus instead of RGB color, I try to augment the
point representation by feature maps of Efficientnet[9].

As illustrated in Figure 3, I use EfficientNet-b5 to ex-
tract visual features for the 5 camera views. Given a image
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Figure 3. Injecting visual feature in set abstraction

with width W and height H , I use the convolutional feature-
maps of the last block with size H

2 ×
W
2 and the last block

with size H
4 ×

W
4 . I use only 2 feature-maps here in order to

save computation and graphic memory usage. With the 3D-
2D correspondence, given a specific 3D point, I can retrieve
its corresponding feature in Efficientnet-b5 feature-maps of
the visible views.

Formally, for point p, following the terminology defined
in section 4.1, the augmented visual feature is obtained as
below:

eijp =

{
EfficientNet− b5[j][V i

p ], p is visible in V i
p

~0, Otherwise
(6)

, where i ∈ {1, 2} is the index of the potential visible cam-
era view and j ∈ {2, 7} is the block index of the convolu-
tional feature-maps in Efficientnet-b5.

By concatenating [ei2p , ei7p ], I obtain the visual feature of
the ith potential view. As Eq.5, define Ep by:

Ep = [e12p , e17p ] + [e22p , e27p ] (7)

To avoid Ep dominating the point feature, I project Ep to
be a 6 entry vector and concatenate it with the raw 5 entry
point feature to produce the final 11 entry vector Sp as the
efficientNet augmented feature.

The 3D point cloud with EfficientNet augmented feature
is then handed over to set abstraction operation.

4.3. Data Augmentation

The implementation of PV-RCNN [7] in OpenPCDet
conducts data augmentation in various ways. For example,
flipping flips the point cloud randomly along x, y, z axis; ro-
tation rotates the point cloud about a random rotation axis.
I keep an augmentation method as long as it won’t change
the predefined 3D/2D coordinates correspondence. In addi-
tion, I don’t apply any data augmentation to the 2D images

because it would be hard to maintain the 3D/2D correspon-
dence otherwise.

4.4. Training Loss

My early fusion methods don’t change components of
PV-RCNN [7], I just reuse its training loss, which I refer to
its paper for reference reading.

5. Experiments
The purpose of the experiment is to find whether my

early fusion methods have positive impact on the perfor-
mance of PV-RCNN. So I don’t pay much effort on repro-
ducing the performance declared in PV-RCNN paper, but
focus on the performance difference between the configura-
tions which turns on and turns off the visual fusion module.

5.1. Experiment Setup

Dataset. I have create two datasets, dataset-mini is a
small dataset serves the quick debugging and validation pur-
pose. It contains only 200 vehicle instances and is split
to 160/40 train/validation sets. The dataset-full covers the
whole 1000 videos, has 4587 instances of cars, pedestri-
ans and cyclists. The dataset-full is split to 3188/1339
train/validation sets. I presented the primary result in mile-
stone report using dataset-mini, at that time, the result
looked negative. I keep on reporting result on data-mini
in final report because it reflects the debugging work and
the progress.

Training Details. I train the network from scratch in an
end-to-end manner with the ADAM optimizer. The batch
size is set to 2, learning rate 0.01 for 30 epochs on 1 Titan
RTX GPU with 24G graphic memory. The cosine annealing
learning rate strategy is adopted for the learning rate decay.
It takes around 1 hours for the training on dataset-mini to
finish and 40 hours for that on dataset-full.

5.2. Performance on dataset-mini

On the dataset-mini, I report 2 metric, the average pre-
cision (AP) of vehicle and the Recall at IoU 0.7. The latter
means the true-positive criteria is the IoU between predicted
bounding box and the ground truth should larger than 0.7.
I evaluate the last 10 epochs of the training checkpoints on
the validation split.

Figure 4 illustrates the comparison of AP and Recall be-
tween PV-RCNN with and without visual information at
milestone stage. The model was not fully trained since the
AP and Recall of both configurations were very low. This
is reasonable because the number of updates is too small
compare to the parameters’ volume. At that time, the model
without visual information (yellow curve) performed much
better than that with visual information (blue curve).

After carefully debugging and reviewing the code, I find
the root cause is two folds. 1. I didn’t scale the range of
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Figure 4. Comparison of PV-RCNN with/without visual information at milestone stage

Figure 5. Comparison of PV-RCNN with/without visual information NOW

pixel value from [0, 255] to [0, 1]. 2. I didn’t normal-
ize the input image with mean and variance of ImageNet
which required by processing of EfficentNet. As illustrated
in Figure 5, after fixing this bug, the model with visual in-
formation (blue curve) performs better than that without vi-
sual information (yellow curve) on the dataset-mini, which
is expected.

5.3. Performance on dataset-full

On the dataset-full, I report average precision (AP) for
3 classes: car, pedestrian and cyclist. The recalls are re-
ported at IoU 0.3, IoU 0.5 and IoU 0.7. I evaluate the last
10 epochs of training checkpoints on validation split to ob-
tain the statistics.

In Figure 6, we see the model is well trained on dataset-
full since the average precision has reasonable high value.
In all the subplots, the blue curve represents the perfor-

mance of model with visual information, the yellow curve
represents the performance of model without visual infor-
mation. On car prediction, the two models draw similar per-
formance curve, especially at the end of the training. Both
models hit 70% AP on car prediction. On the pedestrian
prediction, both models achieve performance above 50%,
however, the model with visual information consistently
outperforms the one without visual information by a large
margin (> 2%). On the cyclist prediction, both models
don’t perform well, but we identify a huge performance gap.
The peak performance of model without visual information
is around 8%, compare to the 12% of model with visual in-
formation, the relative performance gap is 12%−8%

8% = 50%.

To explain the observation in Figure 6, note that the
color variance of car is not as significant as that of hu-
man. Car is generally has a dominant color: white,
black, golden etc. However, for a person, there are var-



Figure 6. Precision Comparison of PV-RCNN with/without visual information on dataset-full

Figure 7. Recall Comparison of PV-RCNN with/without visual information on dataset-full

ious colors can be found on his/her appearance. He/she
may have white/black/blond hair; black/white/yellow skin;
red/black/varicoloured clothes etc. Figure 6 actually
demonstrates that my method has no harm to the capability
to detect car while can greatly enhance the capability to de-
tect human related objects with high color variance, which
is expected.

In Figure 7, we see that the two models have comparable
recall at IoU 0.3. However, at IoU 0.5, the recall of model
with visual information is consistently larger than that of
the model without visual information through out the 10
test epochs. The gap tends to be wider at IoU 0.7. The
true positive-criteria becomes more strict as the IoU thresh-
old increasing, thus Figure 7 demonstrates that my method
can enhance prediction accuracy and is more robust to strict
criteria.

I select statistic of the 29th epoch to do quantitative com-
parison. Table 1 lists the comparison on the average preci-
sion. We see that my method (Point cloud + Image) outper-
forms the pure point cloud configuration on detection of all
the 3 classes.

Table 2 lists the quantitative comparison on the recall.
It can be identified that my method outperforms the pure
point cloud configuration on recall at different IoU criteria
as well.

Based on analysis above, the experiments reveal the fact

that my early fusion method is effective to the 3D object
detection task.

Model Car Pedestrian Cyclist
Point cloud only 69.83% 53.00% 8.30%

Point cloud + Image 69.97% 54.49% 12.34%

Table 1. Average precision comparison between models with and
without visual information at epoch 29

Model Recall 0.3 Recall 0.5 Recall 0.7
Point cloud only 70.07% 62.64% 37.62%

Point cloud + Image 70.11% 63.25% 38.74%

Table 2. Recall comparison between models with and without vi-
sual information at epoch 29

6. Conclusion
In this report, I explain the motivation and techniques of

my early fusion method for point cloud and camera images
in details. Experiment shows my method is effective and
improves the performance of a state of the art network PV-
RCNN. In future work, I shall enable free point projection
rather than limited by 3D-2D correspondence initialized by
Waymo toolkit. I shall keep on exploring the possibility



of fusion at the granularity of point in deeper stage of the
3D object detection pipeline. Code of my project is avail-
able at https://github.com/xiaoxiaoheimei/
cs231A-winter2021-project
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